МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«московский политехнический университет» (МОСКОВСКИЙ ПОЛИТЕХ)

Электростальский институт (филиал) Московского политехнического университета

УТВЕРЖДАЮ

Директор

Электростальского института (филиала)

Московского политехнического университета

Осель /О.Д. Филиппова/ «10» июля 2025г.

Рабочая программа дисциплины

«ТЕПЛОФИЗИКА»

Направление подготовки **22.03.02** «Металлургия»

Направленность образовательной программы «Обработка металлов и сплавов давлением» (набор 2025 года)

Квалификация (степень) выпускника **Бакалавр**

Форма обучения **Очная, очно-заочная**

1. Область применения и нормативные ссылки

Настоящая программа учебной дисциплины устанавливает требования к знаниям и умениям обучающегося и определяет содержание и виды учебных занятий и отчетности.

Программа предназначена для преподавателей, ведущих данную дисциплину, и обучающихся направления подготовки 22.03.02 Металлургия.

Программа разработана в соответствии с:

- Федеральным государственным образовательным стандартом по направлению подготовки 22.03.02 Металлургия, утвержденным приказом Министерства образования и науки РФ от 28.06.2020 №702;
- Образовательной программой высшего образования по направлению подготовки 22.03.02 Металлургия;
- учебным планом по направлению подготовки 22.03.02 Металлургия, профиль Обработка металлов и сплавов давлением.

Целью освоения дисциплины «Теплофизика» является формирование у студентов знаний о физической природе и основных закономерностях процессов тепломассопереноса, методах исследования и анализа указанных процессов.

К основным задачам освоения дисциплины «Теплофизика» следует отнести: ознакомление студентов с основными процессами нагрева перед пластической деформацией и термической обработкой металла;

формирование знаний технологических схем производства черных металлов. В области металлургического производства курс охватывает круг вопросов, связанных с качеством металлопродукции. Рассматриваются вопросы качественного нагрева металла. Отдельно уделяется внимание новому оборудованию (системе отопления печей), обеспечивающему быстрый и равномерный нагрев металлопродукции перед обработкой давлением и с целью проведения термической обработки, и производится сравнение его с оборудованием, известным в металлургии;

освоение методик расчета нагрева металлопродукции сложной формы и умение их практического применения к реальным металлургическим процессам;

подготовка студентов к производственной, проектно-конструкторской и исследовательской деятельности в соответствии с квалификационной характеристикой бакалавра по данному направлению.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Теплофизика» относится к обязательной части (Б.1.1) основной образовательной программы бакалавриата направления подготовки 22.03.02 «Металлургия».

Дисциплина «Теплофизика» взаимосвязана логически и содержательнометодически со следующими дисциплинами:

- математика,
- физика,
- химия;
- металлургическая теплотехника.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины (модуля) у обучающихся формируются следующие компетенции и должны быть достигнуты следующие результаты обучения как этап формирования соответствующих компетенций:

Код	В результате освоения образова- І	Перечень планируемых результатов обуче-
компетенции	тельной программы обучающийся н	ния по дисциплине

	должен обладать	
ОПК-4	Способен проводить измерения	Индикаторы достижения компе-
	и наблюдения в сфере профес-	<u>тенции</u>
	сиональной деятельности, об-	ИОПК-4.1 знать общие законы и пра-
	рабатывать и представлять экс-	вила измерений,
	периментальные данные	ИОПК-4.2 знать принципы действия
		и характеристики измерительных
		устройств;
		ИОПК-4.3 сопоставляет технологию
		проведения типовых экспериментов
		на стандартном оборудовании в лабо-
		ратории и на производстве,
		В том числе:
		Знать:
		основные закономерности процессов
		тепломассопереноса.
		Уметь:
		описывать, рассчитывать и анализиро-
		вать процессы тепломассопереноса,
		выделять факторы, определяющие их
		интенсивность.
		Владеть:
		навыками расчета процессов конвек-
		тивного тепло-и массопереноса, пере-
		дачи тепла излечением и молекуляр-
		ной теплопроводностью.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы.

			Трудо	емко	сть дисц	иплин	ы в ча	cax		
Форма обучения	курс	семестр	Всего час./ зач. ед	Аудиторных часов	Лекции	Семинарские (практические) за- нятия	Лабораторные работы	Самостоятель- ная работа	Контроль (про- межуточная атте- стация)	Форма итого- вого кон- троля
Очная	3	6	144/4	72	36	18	18	72	36	экзамен
Очно- заочная	3	6	144/4	16	6	6	4	128	36	экзамен

Очная форма обучения

Вид учебной работы		Семе 6	стры
Аудиторные занятия (всего)	72	72	
В том числе:			
Лекции	36	36	
Практические занятия	18	18	
Лабораторные работы	18	18	
Самостоятельная работа (всего)	72	72	

В том числе:			
Подготовка к занятиям (изучение лекционного материала, литера-	48	48	
туры, законодательства, практических ситуаций)			
Подготовка к контрольной работе, тестированию	24	24	
Вид промежуточной аттестации (экзамен)	•	-	
Общая трудоемкость час / зач. ед.	144/4	144/4	

Очно-заочная форма обучения

Dur vinckych nakowy	Всего	Семестры	
Вид учебной работы	часов	6	
Аудиторные занятия (всего)	16	16	
В том числе:			
Лекции	6	6	
Практические занятия	6	6	
Лабораторные работы	4	4	
Самостоятельная работа (всего)	96	96	
В том числе:			
Подготовка к занятиям (изучение лекционного материала, литературы, законодательства, практических ситуаций)	48	48	
Подготовка к контрольной работе, тестированию	44	44	
Вид промежуточной аттестации (экзамен)	-	-	
Общая трудоемкость час / зач. ед.	144/4	144/4	

5. Содержание дисциплины

5.1. Тематический план дисциплины

№	№ лек-	_
темы		Основное содержание
1	1-4	Общая характеристика и основные задачи <i>теории теплопроводности</i> . Дифференциальное уравнение теплопроводности и постановка задачи теплопроводности. Теплопроводность при стационарном и нестационарном режиме. Передача тепла теплопроводностью через одно- и многослойные стенки при граничных условиях I и Ш-его рода. Кондуктивный теплообмен Режимы теплопроводности. Основные задачи теплопроводности. Поле температур, тепловой поток, градиент температуры. Закон Фурье. Коэффициент теплопроводности. Стационарная теплопроводность одно- и многослойных пластин при граничных условиях 1 рода. Термическое сопротивление и термическая проводимость. Нестационарная теплопроводность. Скорость, продолжительность и количество переданной теплоты
2	5-8	Конвективный тепло- массообмен Основные понятия конвективного тепло- массообмена. Закон Фурье. Коэффициент теплоотдачи. Свободная и вынужденная конвекция. Обобщенные переменные величины. Подобие тепловых процессов. Теорема подобия. Числа и критерии подобия. Критериальные уравнения. Моделирование тепловых процессов. Обобщение опытных данных на основе теории подобия. Теплоотдача при свободной и вынужденной конвекции. Теплоотдача жидких металлов.

		Радиационный теплообмен
		Природа радиационного теплообмена. Виды радиационных потоков. Соб-
		ственное и эффективное излучение. Закон Планка, Стефана- Больцмана,
		Кирхгофа, Ламберта. Степень черноты.
3	9-12	Условные коэффициенты излучения. Радиационный теплообмен тел с окру-
		жающей средой и между телами.
		Радиационный теплообмен между поверхностями, образующими замкнутую
		область. Радиационное излучение газов. Защита от радиационного теплового
		излучения.
		Сложный теплообмен
		Теплопередача через плоскую стенку. Коэффициент теплопередачи. Интен-
		сификация теплопередачи. Тепловая изоляция.
4	13-18	Радиационно-конвективный теплообмен. Радиационно-кондуктивный тепло-
		обмен.
		Нестационарный теплообмен
		Нестационарная теплопроводность. Скорость, продолжительность и количе-
		ство переданной теплоты. Регулярный тепловой режим.
		Теплопроводность пластин при граничных условиях 1 рода. Использование
		автограмм для расчета процессов нестандартного теплообмена.

5.2. Практические занятия

№ темы	№ п/з	основное содержание
1	1-2	Расчет стационарной теплопроводности пластин при граничных условиях 1 рода. Рассматриваются одно- и двухслойные стенки из металла и огнеупоров. Определяется количество переданной теплоты, термические сопротивления слоёв и температуры на поверхности их контакта. Исходные данные указывает преподаватель. Обсуждаются возможности интенсификации и демпфирования теплообмена
2	3-4	Расчёт конвективного тепло- и массообмена Выполняются расчеты естественной конвекции в ограниченном пространстве, теплоотдачи расплавленных металлов и вынужденной конвекции при турбулентном движении в длинных трубах. Определяется коэффициент теплоотдачи и количество передаваемой теплоты. Обсуждаются возможности интенсификации и демпфирования теплоотдачи
3	5-6	Расчёты радиационного теплообмена Рассматриваются параллельные поверхности и тела в замкнутом пространстве; потери теплоты в окружающую среду с поверхностей тел. Определяются приведенная степень черноты системы тел, расчётным и графическим путем, а так же количество переданной теплоты. Обсуждается зависимость степени черноты от природы тел и температуры и эффективность экранирования
4	7-9	Расчеты теплопередачи Выполняются расчёты теплопередачи через однослойные и многослойные плоские стенки, газовые и жидкостные прослойки. Обсуждаются вопросы интенсификации теплопередачи и тепловой изоляции. Расчёты нестационарной теплопроводности Выполняются расчеты нагрева и охлаждения плоских и цилиндрических стенок с помощью номограмм. Определяются температуры в центре, на поверхности стенок, температурные перепады по толщине стенки и количество переданной теплоты. Выполняется расчёт темпа и продолжительности регулярного режима.

5.3. Лабораторные занятия

№ темы	№ л/р	основное содержание
2	1-2	Исследование стационарного теплового режима однослойной и двухслой-
		ной стенки. 4 час.
3	3-4	Исследование теплоотдачи при обтекании пластин воздухом. 4 час.
4	5-7	Исследование радиационного теплообмена тел.6 час.
4	8-9	Исследование охлаждения термически тонкого тела на воздухе. 4 час.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю).

Фонд оценочных средств для текущего контроля и промежуточной аттестации обучающегося по дисциплине представлен в Приложении 1 к рабочей программе.

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

№ п/п	Литература
1	Михеев М.А., Михеева И.М. Основы теплопередачи. 3-е изд. – М.: Изд-во
	«БАСТЕТ». 2010. – 344с.

б) дополнительная литература

№ п/п	Литература
1	Теплотехника металлургического производства. Теоретические основы т. 1/ под ред.
	Кривандина В.А - М.: МИСиС, 2002. – 608с.
2	Зальцман Э.С. Андреев Э.И. Теплофизика. Лабораторный практикум. 2004г. – 63с.
3	Зальцман Э.С. Андреев Э.И. Нестационарный теплообмен. Лабор. практикум. –
	ЭПИ МИСиС ТУ: 1998. – 50с.

в) Электронные ресурсы и программное обеспечение:

Операционная система Windows 7 DreamSpark № 9d0e9d49-31d1-494a-b303-612508131616 Офисные приложения, Microsoft Office 2013 (или ниже) — Microsoft Open License. Лицензия № 61984042

Microsoft Project 2013 Standart 32- bit/x64 Russian.

Антивирусное ПО Avast (бесплатная версия

1.	www.e.lanbook.com Электронно-библиотечная система «Лань»	
2.	ЭБС «Университетская библиотека онлайн» (https://biblioclub.ru)	
3.	http://cyberleninka.ru/Научная электронная библиотека «КИБЕРЛЕНИНКА»	
	Интернет-ресурсы включают учебно-методические материалы в электронном виде,	
4.	представленные на сайте www.mami.ru в разделе «Библиотека МосковскогоПолитеха»	
	(http://lib.mami.ru/ebooks/).	
5.	Национальная электронная библиотека (http://нэб.рф)	
6.	ЭБС «Юрайт» (<u>www.urait.ru</u>)	

8. Материально-техническое обеспечение дисциплины

п\п	вание дисци- плины (моду- ля), практик в соответствии с учебным пла- ном	циальных помещений и помещений для самосто- ятельной работы	ных помещений и помещений для самостоятельной работы
11.	Теплофизика	Учебная аудитория лекционного типа № 1508, учебно-лабораторный корпус, 144000, Московская область, г.Электросталь, ул.Первомайская, д.7	Комплект мебели, переносной мультимедийный комплекс (проекционный экран, проектор, ноутбук)
		Учебная аудитория для занятий семинарского типа № 1503, учебно-лабораторный корпус, 144000, Московская область, г.Электросталь, ул.Первомайская, д.7	Комплект мебели, переносной мультимедийный комплекс (проекционный экран, проектор, ноутбук)

9. Образовательные технологии

Методика преподавания дисциплины «Химия» и реализация компетентностного подхода в изложении и восприятии предусматривает использование следующих активных и интерактивных форм проведения групповых, индивидуальных, аудиторных занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся:

- проведение интерактивных занятий по процедуре подготовки к интернеттестированию на сайтах: www.i-exam.ru;
- использование интерактивных форм текущего контроля в форме аудиторного интернет-тестирования;
 - проведение и защита лабораторных работ.

10. Методические рекомендации по организации изучения дисциплины 10.1. Методические указания для обучающихся по освоению дисциплины

Методические указания по работе над конспектом лекций во время и после проведения лекции

В ходе лекционных занятий обучающимся рекомендуется выполнять следующие действия: вести конспектирование учебного материала; обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации по их применению; задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений.

Методические указания к практическим занятиям

При подготовке к практическим занятиям, обучающимся необходимо изучить основную литературу, ознакомиться с дополнительной литературой, новыми публикациями в периодических изданиях: журналах. При этом учесть рекомендации преподавателя и

требования учебной программы. В ходе подготовки к практическим занятиям необходимо освоить основные понятия и методики расчета показателей, ответить на контрольные вопросы.

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, что зачитывается как текущая работа студента.

Методические указания по выполнению контрольной работы

Для закрепления практических навыков студентам могут быть выданы типовые индивидуальные задания, которые должны быть сданы в установленный преподавателем срок. Выполненные задания оцениваются на оценку.

Цель выполнения индивидуальной контрольной работы: проверка умений и навыков самостоятельного решения конкретных задач по данному разделу дисциплины, проверка логического обоснования решения, умений применение теоретических знаний к решению задач.

Методические рекомендации для самостоятельной работы

Самостоятельная работа является одним из видов учебных занятий. Самостоятельная работа направлена на самостоятельное изучение отдельной темы учебной дисциплины и является обязательной для каждого обучающегося, ее объем определяется учебным планом. Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Задачи самостоятельной работы студента:

- развитие навыков самостоятельной учебной работы;
- освоение содержания дисциплины;
- углубление содержания и осознание основных понятий дисциплины;
- использование материала, собранного и полученного в ходе самостоятельных занятий для эффективной подготовки к зачету/экзамену.

Виды внеаудиторной самостоятельной работы:

- самостоятельное изучение отдельных тем дисциплины;
- подготовка к лекционным занятиям;
- подготовка к семинарам и практическим занятиям;
- оформление отчетов по выполненным лабораторным работам и подготовка к их защите;
- выполнение расчетно-графической работы.

Для выполнения любого вида самостоятельной работы необходимо пройти следующие этапы:

- определение цели самостоятельной работы;
- конкретизация познавательной задачи;
- самооценка готовности к самостоятельной работе;
- выбор адекватного способа действия, ведущего к решению задачи;
- планирование работы (самостоятельной или с помощью преподавателя) над заданием;
- осуществление в процессе выполнения самостоятельной работы самоконтроля (промежуточного и конечного) результатов работы, и корректировка выполнения работы;
- рефлексия;
- презентация работы.

10.2. Методические рекомендации для преподавателя

Взаимодействие преподавателя со студентами можно разделить на несколько составляющих — лекционные, практические и лабораторные занятия и консультирование.

Преподаватель должен последовательно вычитать студентам ряд лекций, в ходе которых следует сосредоточить внимание на ключевых моментах конкретного теоретическо-

го материала, а также организовать проведение практических занятий таким образом, что-бы активизировать мышление студентов, стимулировать самостоятельное извлечение ими необходимой информации из различных источников, сравнительный анализ методов решений, сопоставление полученных результатов, формулировку и аргументацию собственных взглядов на многие спорные проблемы.

Перед началом преподавания преподавателю необходимо:

- изучить рабочую программу, цели и задачи дисциплины;
- четко представлять себе, какие знания, умения и навыки должен приобрести студент;
 - познакомится с видами учебной работы;
 - изучить содержание разделов дисциплины.

В ходе лекционного занятия преподаватель должен назвать тему, учебные вопросы, ознакомить студентов с перечнем основной и дополнительной литературы по теме занятия.

Во вступительной части лекции обосновать место и роль изучаемой темы в учебной дисциплине, раскрыть ее практическое значение. Если читается не первая лекция, то необходимо увязать ее тему с предыдущей, не нарушая логики изложения учебного материала. Лекцию следует начинать, только чётко обозначив её характер, тему и круг тех вопросов, которые в её ходе будут рассмотрены.

В основной части лекции следует раскрывать содержание учебных вопросов, акцентировать внимание студентов на основных категориях, явлениях и процессах, особенностях их протекания. Раскрывать сущность и содержание различных точек зрения и научных подходов к объяснению тех или иных явлений и процессов. Следует аргументировано обосновать собственную позицию по спорным теоретическим вопросам. Приводить примеры. Задавать по ходу изложения лекционного материала риторические вопросы и самому давать на них ответ. Это способствует активизации мыслительной деятельности студентов, повышению их внимания и интереса к материалу лекции, ее содержанию. Преподаватель должен руководить работой студентов по конспектированию лекционного материала, подчеркивать необходимость отражения в конспектах основных положений изучаемой темы, особо выделяя категорийный аппарат.

В заключительной части лекции необходимо сформулировать общие выводы по теме, раскрывающие содержание всех вопросов, поставленных в лекции. Объявить план очередного практического или лабораторного занятия, дать краткие рекомендации по подготовке студентов к практическому занятию или лабораторной работе. Определить место и время консультации студентам, пожелавшим выступить на занятии с докладами и рефератами по актуальным вопросам обсуждаемой темы.

Цель практических и лабораторных занятий - обеспечить контроль усвоения учебного материала студентами, расширение и углубление знаний, полученных ими на лекциях и в ходе самостоятельной работы. Повышение эффективности практических занятий достигается посредством создания творческой обстановки, располагающей студентов к высказыванию собственных взглядов и суждений по обсуждаемым вопросам, желанию у студентов поработать у доски при решении задач.

После каждого лекционного, лабораторного и практического занятия сделать соответствующую запись в журналах учета посещаемости занятий студентами, выяснить у старост учебных групп причины отсутствия студентов на занятиях. Проводить групповые и индивидуальные консультации студентов по вопросам, возникающим у студентов в ходе их подготовки к текущей и промежуточной аттестации по учебной дисциплине, рекомендовать в помощь учебные и другие материалы, а также справочную литературу.

Экзамен или зачет по дисциплине проводится в форме устного ответа с последующей индивидуальной беседой со студентом на основе контрольных вопросов. Оценка выставляется преподавателем и объявляется после ответа. Преподаватель, принимающий зачет или экзамен, лично несет ответственность за правильность выставления оценки.

11. Особенности реализации дисциплины «Теплофизика» для инвалидов и лиц с ограниченными возможностями здоровья

. Обучение по дисциплине инвалидов и лиц с ограниченными возможностями здоровья осуществляется преподавателем с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Обучающиеся с ограниченными возможностями здоровья обеспечены электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки бакалавров 22.03.02 «Металлургия».

Программа обсуждена на заседании кафедры ММТ , утв. 23.06.2025 протокол № 11

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Электростальский институт (филиал) Московского политехнического университета

Направление подготовки **22.03.02** «Металлургия»

Направленность образовательной программы «Обработка металлов и сплавов давлением»

Форма обучения: очная, очно-заочная

Виды профессиональной деятельности: технологический; организационно-управленческий; проектный.

Кафедра: «Машиностроительные и металлургические технологии»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО ДИСЦИПЛИНЕ
«ТЕПЛОФИЗИКА»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины. Формы контроля формирования компетенций

Код компе- тенции	В результате освоения образовательной программы обучающийся должен обладать
ОПК-4	Способен проводить измерения и наблюдения в сфере профессиональной деятельности, обрабатывать и представлять экспериментальные данные

В процессе освоения образовательной программы данные компетенции, в том числе их отдельные компоненты, формируются поэтапно в ходе освоения обучающимися дисциплин (модулей), практик в соответствии с учебным планом и календарным графиком учебного процесса.

2. Показатели и критерии оценивания компетенций при изучении дисциплины, описание шкал оценивания

2.1 Критерии оценки ответа на экзамене

Показатель	Критерии оценивания				
показатель	2	3	4	5	
ОПК-4 - Способе	ОПК-4 - Способен проводить измерения и наблюдения в сфере профессиональной				
деятельности, обр	деятельности, обрабатывать и представлять экспериментальные данные				
Знать:	Обучающийся	Обучающийся	Обучающийся	Обучающийся	
основные зако-	демонстрирует	демонстрирует	демонстрирует	демонстрирует	
номерности	полное отсут-	неполное соот-	частичное соот-	полное соот-	
процессов теп-	ствие или не-	ветствие знаний	ветствие знаний	ветствие необ-	
ломассоперено-	достаточное	основных зако-	основных зако-	ходимых зна-	
ca.	соответствие	номерностей	номерностей	ний основных	
	знаний основ-	процессов теп-	процессов теп-	закономерно-	
	ных законо-	ломассоперено-	ломассоперено-	стей процессов	
	мерностей	са. Допускаются	са. Допускаются	тепломассопе-	
	процессов теп-	значительные	незначительные	реноса. Сво-	
	ломассопере-	ошибки, прояв-	ошибки, неточ-	бодно опери-	
	носа.	ляется недоста-	ности, затрудне-	рует приобре-	
		точность знаний,	ния при анали-	тенными зна-	
		по ряду показа-	тических опера-	ниями.	
		телей, обучаю-	циях.		
		щийся испыты-			
		вает значитель-			
		ные затруднения			
		при оперирова-			
		нии знаниями			
		при их переносе			
		на новые ситуа-			
		ции.			
Уметь:	Обучающийся	Обучающийся	Обучающийся	Обучающийся	
описывать, рас-	не умеет или в	демонстрирует	демонстрирует	демонстрирует	
считывать и	недостаточной	неполное соот-	частичное соот-	полное соот-	
анализировать	степени умеет	ветствие умений	ветствие умений	ветствие уме-	
процессы теп-	описывать,	описывать, рас-	описывать, рас-	ний описывать,	
ломассоперено-	рассчитывать и	считывать и ана-	считывать и	рассчитывать и	
са, выделять	анализировать	лизировать про-	анализировать	анализировать	

фотпольт	T# 01100011 FOR	********************************	THOUSE OF THE TOTAL	T# 01100011 TOT
факторы, опре-	процессы теп-	цессы тепломас-	процессы теп-	процессы теп-
деляющие их	ломассопере-	сопереноса, вы-	ломассоперено-	ломассопере-
интенсивность.	носа, выделять	делять факторы,	са, выделять	носа, выделять
	факторы, опре-	определяющие	факторы, опре-	факторы,
	деляющие их	их интенсив-	деляющие их	определяющие
	интенсивность.	Ность.	интенсивность.	их интенсив-
		Допускаются	Умения освое-	ность.
		значительные	ны, но допуска-	Свободно опе-
		ошибки, прояв-	ются незначи-	рирует приоб-
		ляется недоста-	тельные ошибки,	ретенными
		точность уме-	неточности, за-	умениями,
		ний, по ряду по-	труднения при	применяет их в
		казателей, обу-	аналитических	ситуациях по-
		чающийся испы-	операциях, пе-	вышенной
		тывает значи-	реносе умений	сложности.
		тельные затруд-	на новые, не-	
		нения при опе-	стандартные си-	
		рировании уме-	туации.	
		ниями при их		
		переносе на но-		
D	05	вые ситуации.	05	05
Владеть:	Обучающийся	Обучающийся	Обучающийся	Обучающийся
навыками рас-	не владеет или	владеет навыка-	частично владе-	в полном объ-
чета процессов	в недостаточ-	ми расчета про-	ет навыками	еме владеет
конвективного	ной степени	цессов конвек-	расчета процес-	навыками рас-
тепло-и массо-	владеет навы- ками расчета	тивного тепло-и	сов конвектив-	чета процессов конвективного
переноса, передачи тепла из-	процессов кон-	массопереноса, передачи тепла	массопереноса,	
лечением и мо-	вективного	-	-	тепло-и массо-
лекулярной		излечением и молекулярной	передачи тепла излечением и	* '
теплопроводно-	тепло-и массо-переноса, пе-	теплопроводно-	молекулярной	редачи тепла излечением и
стью.	редачи тепла	стью. Допуска-	теплопроводно-	молекулярной
Стыо.	излечением и	ются значитель-	стью. Навыки	теплопровод-
	молекулярной	ные ошибки,	освоены, но до-	ностью. Сво-
	теплопровод-	проявляется не-	пускаются не-	бодно приме-
	ностью.	достаточность	значительные	няет получен-
	11001110.	владения навы-	ошибки, неточ-	ные навыки в
		ками по ряду	ности, затрудне-	ситуациях по-
		показателей,	ния при анали-	вышенной
		Обучающийся	тических опера-	сложности.
		испытывает зна-	циях, переносе	
		чительные за-	умений на но-	
		труднения при	вые, нестан-	
		применении	дартные ситуа-	
		навыков в новых	ции.	
		ситуациях.	1	
	l)	l	<u> </u>

Форма промежуточной аттестации: экзамен.

Промежуточная аттестация обучающихся в форме экзамена проводится по результатам выполнения всех видов учебной работы, предусмотренных учебным планом по данной дисциплине (модулю), при этом учитываются результаты текущего контроля успеваемости в течение семестра. Оценка степени достижения обучающимися планируемых ре-

зультатов обучения по дисциплине (модулю) проводится преподавателем, ведущим занятия по дисциплине (модулю) методом экспертной оценки. По итогам промежуточной аттестации по дисциплине (модулю) выставляется оценка «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно».

К промежуточной аттестации допускаются только студенты, выполнившие все виды учебной работы, предусмотренные рабочей программой по дисциплине.

Шкала оценивания	Описание
Отлично	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
Хорошо	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует неполное, правильное соответствие знаний, умений, навыков приведенным в таблицах показателей, либо если при этом были допущены 2-3 несущественные ошибки.
Удовлетворительно	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, в котором освещена основная, наиболее важная часть материала, но при этом допущена одна значительная ошибка или неточность.
Неудовлетворительно	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.

3. Методические материалы (типовые контрольные задания), определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Контрольные задания, применяемые в рамках текущего контроля и промежуточной аттестации по дисциплине, носят универсальный характер и предусматривают возможность комплексной оценки всего набора заявленных по данной дисциплине индикаторов сформированности компетенций.

Контрольные вопросы и задания для проведения промежуточной аттестации (экзамен)

№ п/п	Текст вопросов		
1	Механизм процесса теплопроводности. Основные задачи изучения		
2	Закон Фурье, градиент температуры. Стадии процесса теплопроводности		
3	Коэффициент теплопроводности, его определение		
4	Термическое сопротивление, термическая проводимость		
5	Понятие «электротепловая аналогия»		
6	Механизм процесса конвективного тепломассопереноса		
7	Закон Ньютона - Рихмана. Теплоотдача		
8	Понятие об обобщённых переменных величинах		
9	Теорема подобия		
10	Свободная и вынужденная конвекция		
11	Радиационный теплообмен на поверхности тела		
12	Степень черноты, её определение		
13	Радиационный теплообмен между параллельными поверхностями. Интенсификация и демпфирование теплообмена.		
14	Радиационный теплообмен тела с окружающей газообразной средой. Интенсификация и демпфирование теплообмена		
15	Сложный теплообмен. Методика расчета		
16	Теплопередача через постоянную стенку. Коэффициент теплопередачи и факторы, влияющие на его величину		
17	Нестационарная теплопроводность. Практические задачи нагрева и охлаждения тел		
18	Уравнение теплопроводности Фурье. Понятия о температуропроводности и тепловой аккумуляции материалов		
19	Условия однозначности процессов теплообмена		
20	Моделирование процессов теплопроводности		
21	Регулярный тепловой режим. Условия возникновения и течения		
22	Определить средние значения коэффициента теплоотдачи и количество переданной теплоты при течении воды в горизонтальной трубе диаметром d, длиной l, если скорость течения W, температура воды $T_{\rm x}$, температуре окружающей среды $T_{\rm c}$. Значения коэффициента кинематической вязкости и коэффициента теплопроводности заданы		
23	Рассчитать радиационный тепловой поток от стальной окисленной трубы наружным диаметром d, длинной l. Труба используется для отопления помещения с температурой $T_{\rm m}$. Температура стенки трубы $T_{\rm c}$.		
24	Труба, в которой протекает горячая вода имеет размеры: наружный диаметр d, длину l. Температура стенки трубы T_c , воздуха в помещении $T_{\rm ж}$. Определить коэффициент теплоотдачи при естественной конвекции и конвективный тепловой поток		

Рассчитать полный тепловой поток и суммарный коэффициент теплоотдачи от трубопровода. Наружный диаметр d, длина l и температура T_c теплоносителя заданы. Трубопровод используется для отопления помещения с температурой воздуха $T_{\rm ж}$ и стен $T_{\rm ct}$

Текущий контроль

Контрольная работа

- 1. Определить плотность теплового потока через плоскую шамотную стенку толщиной δ =0,5 м и найти действительное распределение температуры, если на наружных поверхностях температуры соответственно t_1 =1000°C, t_2 =0°C и коэффициент теплопроводности шамота λ =1,0*(1+0,001t) BT/(м * °C).
- 2. Определить значение эквивалентного коэффициента теплопроводности пакета листового трансформаторного железа из n листов, если толщина каждого листа δ_1 =0,5 мм и между ними проложена бумага толщиной δ_2 =0,05 мм. Коэффициент теплопроводности железа λ_1 =60 и бумаги λ_2 =0,15 Вт/(м * °C).
- 3. Паропровод диаметром 160/170 мм покрыт двухслойной изоляцией. Толщина первого слоя δ_2 =30 мм и второго δ_3 =50 мм. Коэффициенты теплопроводности трубы и изоляции соответственно равны: λ_1 =50, λ_2 =0,15, λ_3 = 0,08 Bt/(м * °C). Температура внутренней поверхности паропровода t_1 =300°C и внешней поверхности изоляции t_4 =50oC. Определить линейную плотность теплового потока и температуры на поверхности раздела отдельного слоя.
- 4. Через трубу диаметром d=50 мм и длинной l=3 м со скоростью w=0,8 м/с протекает вода. Определить средний коэффициент теплоотдачи, если средняя температура воды =50oC, а температура стенки =70oC.
- 5. Определить потерю теплоты путем конвекции вертикальным неизолированным паропроводом диаметром d=100 мм и высотой h=4 м, если температура наружной стенки t_c =170 °C, а температура среды (воздуха) t_{κ} =30 °C.
- 6. Определить коэффициент теплоотдачи при конденсации водяного пара атмосферного давления на поверхности горизонтальной трубы диаметром D=16мм, если температура поверхности тубы t_c =80 °C.
- 7. Определить потерю теплоты путем излучения с поверхности стальной трубы диаметром d=70 мм, и длинной l=3 м при температуре поверхности t_1 =277 °C, если эта труба находится: а) в большом кирпичном помещении, температура стенок которого t_2 =27 °C; б) в кирпичном канале, площадь которого равна 0.3×0.3 м при температуре стенок t_2 =27 °C.
- 8. Паропровод диаметром 200/216 мм покрыт слоем совелитовой изоляции толщиной 120 мм, коэффициент теплопроводности которой λ_2 =0,1 Bt/(м * °C). Температура пара $t_{\rm ж1}$ =300 °C и окружающего воздуха $t_{\rm ж2}$ =25 °C. Кроме того, заданы коэффициент теплопроводности стенки λ_1 =40 Bt/(м * °C), α_1 =100 и α_2 =8,5 Bt/(м²*°C). Требуется определить линейный коэффициент теплопередачи, линейную плотность теплового потока и температуру в месте соприкосновения паропровода с изоляцией.
- 9. Трубопровод с внешним диаметром d_2 =15 мм необходимо покрыть тепловой изоляцией. Целесообразно ли использовать в качестве изоляции асбест, коэффициент теплопро-

водности которого $\lambda_{\text{из}}$ =0,1 Bt/(м * °C). Коэффициент теплоотдачи от внешней поверхности изоляции в окружающую среду α_2 =8 Bt/(м² * °C).

10. В холодильной установке необходимо охладить жидкость, расход которой G_1 =275 кг/ч, от =120 °C до =50 °C. Теплоемкость жидкости $c_{\rm p1}$ =3,05 кДж/(кг * °C). Для охлаждения используется вода с =10 °C. Расход охлаждающей воды G_2 =2200 кг/ч. Теплоемкость воды $c_{\rm p2}$ =4,19 кДж/(кг * °C). Определить площадь поверхности нагрева при прямотоке и противотоке, если коэффициент теплопередачи k=1000 Вт/(м2 * °C).

Критерии оценки контрольной работы

Оценка	Критерий оценки
Отлично	полное, правильное выполнение заданий с отдельными
	недочётами; выполнение от 90% и более.
Хорошо	правильное выполнение заданий с незначительным
	количеством ошибок; выполнение более 75% менее 90 %.
Удовлетворительно выполнение основной части заданий с ошибкам;	
	выполнение более 50% менее 75 %.
Неудовлетворительно частичное выполнение заданий (менее половины); д	
	значительного количества ошибок; выполнение менее 50%.

Устный опрос

- 1. Термодинамическая система, термодинамические параметры.
- 2. Уравнение состояния газов.
- 3. Обратимые и необратимые процессы. 4. Первое начало термодинамики.
- 5. Круговые процессы.
- 6. Второе начало термодинамики.
- 7. Термодинамические процессы и циклы.
- 8. Цикл Карно.
- 9. Поршневые двигатели внутреннего сгорания.
- 10. Передача тепла теплопроводностью Основные понятия теплопроводности: температурное поле, градиент температуры, вектор плотности теплового потока, коэффициент теплопроводности.
- 11. Дайте определение понятию «теплоотдача». Понятию «теплопередача». Размерность величин и их физический смысл. Дайте определение понятию «плотность теплового потока». Сформулируйте постулат Фурье.
- 12. С какой целью формулируются условия однозначности и какие группы величин задают в них? Начальные и граничные условия. Что задается в граничных условиях 1-ого, 2-ого и 3-его рода?
- 13. Как изменяется температура по толщине бесконечной пластины при стационарном режиме теплопроводности? Привести математическую запись распределения температуры по толщине стенки.
- 14. Что такое суммарное тепловое сопротивление многослойной стенки и чему оно равно?
- 15. Тепловой поток через бесконечную пластину при стационарных условиях при задании граничных условий 1-го и 3-его рода.
- 16. Как изменяется температура в стенке длинной трубы при стационарном режиме теплопроводности?
- 17. Критический диаметр изоляции. Объясните его существование для цилиндрической стенки
- 18. Нагрев и охлаждение металла. Прогреваемая толщина металла. Термически «тонкие» и термически «массивные» тела.
- 19. Чему равен критерий Био? Физический смысл этого критерия; его роль в расчетах не-

стационарной теплопроводности.

- 20.. Вынужденная и свободная конвекция.
- 21. Основы теории подобия. Теоремы подобия.
- 22. Физический смысл коэффициента теплоотдачи конвекцией. Какой критерий содержит эту величину?
- 23. Каковы особенности свободной конвекции в ограниченном и неограниченном пространстве?
- 24. Каковы особенности течения жидкости (газа) в трубах.
- 25. Критериальные уравнения, описывающие свободную и вынужденную конвекцию. принципиальная разница между обеими группами уравнений?
- 26. Основы теории подобия Теоремы подобия.
- 27. Вынужденная конвекция и уравнения, описывающие этот процесс. 28. Критерии подобия и способы их получения. Привести пример.
- 29. Теплоотдача конвекцией при омывании газом пучка труб.
- 30. Тепловое излучение. Свойства излучения. Виды лучистых потоков. Угловая плотность излучения. Яркость излучения.
- 31. Закон сохранения энергии для плотностей лучистых потоков.
- 32. Степень черноты тела. В каком случае степень черноты тела равна его поглощательной способности?
- 33. Законы теплового излучения: закон Планка, закон смещения Вина, закон Кирхгофа и следствия из него, закон косинусов Ламберта.
- 34. Теплообмен излучением в системе двух бесконечных плоскопараллельных тел, разделенных диатермической средой. Теплообмен излучением при наличии экранов. 35. Геометрические свойства лучистых потоков. Элементарный, локальный и средний угловой коэффициент
- 36. Излучение газов. Расчет степени черноты газового слоя. 37. Закон Бугера-Бера.
- 38. Коэффициент теплоотдачи излучением и способы его определения.
- 39. Теплопередача излучением в системе тел, разделенных лученепрозрачной средой. 40. Эффективная толщина излучающего газового слоя и способ ее определения.
- 41. Графический метод определения степени черноты излучающего газового слоя.

Критерии оценки устного опроса (собеседования)

Оценка «отлично» выставляется студенту, если студент ориентируется в теоретическом материале; имеет представление об основных подходах к излагаемому материалу; знает определения основных теоретических понятий излагаемой темы, умеет применять теоретические сведения для анализа практического материала, в основном демонстрирует готовность применять теоретические знания в практической деятельности и освоение большинства показателей формируемых компетенций.

Оценка «хорошо» выставляется студенту, если студент ориентируется в теоретическом материале; имеет представление об основных подходах к излагаемому материалу, но затрудняется в ответах на некоторые вопросы; знает определения основных теоретических понятий излагаемой темы, но не в полной мере отражает суть рассматриваемой проблемы, в основном умеет применять теоретические сведения для анализа практического материала, в основном демонстрирует готовность применять теоретические знания в практической деятельности и освоение большинства показателей формируемых компетенций.

Оценка «удовлетворительно» выставляется студенту, если показаны недостаточные знания теоретического материала, основных понятий излагаемой темы, не всегда с правильным и необходимым применением специальных терминов, понятий и категорий; анализ практического материала был нечёткий.

Оценка «неудовлетворительно» выставляется в случаях, когда не выполнены условия, позволяющие выставить оценку «удовлетворительно».

Тематика лабораторных работ

- 1. Исследование стационарного теплового режима однослойной и двухслойной стенки.
- 2. Исследование теплоотдачи при обтекании пластин воздухом.
- 3. Исследование радиационного теплообмена.
- 4. Исследование охлаждения термически тонкого тела на воздухе.

Критерии оценки лабораторной работы

- «5» (отлично): выполнены все задания лабораторной работы, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания лабораторной работы; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все задания лабораторной работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания лабораторной работы; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.